Proyecto tipo: Recomendador para app de relatos

PROBLEMA

El cliente solicita la elaboración de dos apartados:

  1. Sistema recomendador basado en Machine Learning
  2. Sistema de detección de tendencias

En la entrevista con el cliente se llega a la conclusión de que lo que en el fondo quiere es aumentar el tiempo de uso de la app y la recurrencia de uso: la retención.

Además, necesita comenzar a almacenar datos para posteriormente explotarlos.

Actualmente el volumen de relatos es de aproximadamente 300 y se espera un crecimiento de aproximadamente uno al día.

PROPUESTA

Para el primer problema (el recomendador) empezaría por implementar algunas estrategias que no requieren servicios externos, para así comenzar a tener datos y ver cuales de ellas son las que mejor funcionan. Por ejemplo:

  • Al acabar una historia proponer de 1 a 3 recomendaciones: una random, otra random de la misma categoría, otra random de el mismo autor.
  • Si se incluyesen tags para afinar la categorización de las historias, incluiría una cuarta recomendación en el punto anterior.
  • Cuando se abandona una historia preguntaría si se quiere guardar el progreso (y así saber si hay interés en ella).
  • Gestionar el progreso que se lleva en cada historia.
  • A las 6h, 12h, 24h, 48h del último uso lanzaría una notificación con texto del último párrafo leído de la última historia si se dejó a medias, o el primero de una recomendación del tipo que mejor esté funcionando para ese usuario (por categoría, autor, random, o tags si se implementan).
  • Incluir fotos de los personajes y una vista de su perfil.

Todo esto se puede gestionar con facilidad desde la propia aplicación, y entendiendo que la empresa dispone de desarrolladores para esa parte, por el momento no se presupuestará.

Para la captación de datos para su explotación, los principales actores son 3:

  1. Google Analytics. El problema que tiene es que en el momento que se quieren exportar datos se necesita la versión premium que tiene un coste de $150.000 USD al año.
  2. Mixpanel. Una solución de análisis que dispone de APIs para integrarla con cualquier sistema y poder exportar los datos. Su precio es de $999 USD al año. Es una buena solución siempre que no se vuelva poco flexible, ya que a la larga te tienes que amoldar a sus posibilidades.
  3. Una solución a medida que permita guardar cuantos datos se desee en el formato que se prefiera, para que posteriormente se les puedan dar distintos tratamientos para obtener distintas informaciones ya sean en modo de servicio para proveer de nuevas funcionalidades a la aplicación, informes, datos tratados para su venta. Es una buena solución en cuanto a relación flexibilidad y coste.

Dado que las dos primeras opciones sólo requieren realizar modificaciones en la aplicación, se presupuestará sólo la tercera.

A partir de tener los datos almacenados mediante cualquiera de los sistemas, posteriormente se podrán tratar para cubrir cualesquiera necesidades surjan:

  • Obtener perfil de uso y progreso de un usuario.
  • Obtener recomendaciones a medida de un usuario.
  • Creación de informes.
  • Búsqueda de patrones de comportamiento.
  • Envío de notificaciones personalizadas.
  • Etc.

CONCEPTO

Elaboración de un servicio que reciba datos para identificación del dispositivo/usuario y una colección de eventos (1..N) para almacenar todas las acciones que haya realizado el usuario. El paso de datos se hará en formato JSON de tal modo que la definición de la estructura pueda ir variando con el tiempo sin necesidad de modificar el servicio.

El hecho de permitir mandar varios eventos, permitirá que no se pierda información cuando la aplicación se use offline. Además permitirá no estar realizando comunicaciones constantes si por ejemplo se decide registrar cada uno de los “scroll” que se hacen en las historias para seguir leyendo, pudiendo guardarse cada 10 scrolls por ejemplo.

A petición del cliente se usaría Azure.

Se propone para la computación usar Azure Functions, ya que permite que el sistema escale de manera automática y no pagar nada cuando no hay uso del servicio.

Para el almacenamiento se sugiere el uso de Azure Cosmos DB, una base de datos orientada a documentos, que permite almacenar cualquier tipo de estructura de datos, pudiendo cambiarse esta sobre la marcha, permitiendo así introducir nuevos datos que se haya visto con el uso que pueden ser útiles.

PRECIO*

El precio total es de 2.800€.

* Se omite el desglose en componentes por simplicidad.

TIEMPOS

El proyecto tiene una estimación de tiempo de entrega de 1 (un) mes, desde la fecha de inicio de los trabajos.

Nota aclaratoria:

Este proyecto tipo, es un ejemplo de proyecto que se ha realizado o se podría realizar. En ningún caso tiene validez como presupuesto real y sólo pretende documentar las distintas posibilidades que existen.

Por favor, si tuviese necesidad de algo similar, no dude en ponerse en contacto.

Autor: Javi López

Arquitecto/desarrollador, creativo, buscador de nuevas soluciones y modelos de negocio, crítico constructivo y ex muchas cosas

Thank you very much for sharing your opinion with the world

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.